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Abstrart-A structural theory is presented for the large static plastic deformation of space frames composed
of thin walled members. Displacements comparable to the overall structural dimensions are contemplated.
The frame is considered to consist of an arbitrary number of beam elements connected at node points. The
analysis assumes that plastic deformation is confined to idealized hinges located at the node points. As a basis
for a general frame computer program, the equations for a beam element are derived as a relationship
between appropriate generalized force and deformation rates. The structural constitutive theory employed
for the plastic binge includes biaxial bending, torsion, and axial extension. It accounts for reduction in the
load carrying capacity of the hinge due to local deformation. Predicted force-deformation curves for a space
frame are in good agreement with experimental results.

INTRODUCTON

Over the last few decades structural plasticity has proved remarkably effective in the analysis of
structures. The foundations of the subject are well documented in a number of textbooks[l-3].
Of particular interest here is the concept of limit analysis of frames. Using the idealizations of
perfect plasticity and plastic hinges (collapse mechanism), it permits the relatively simple
determination of the collapse load. In the classical formulation deformation prior to collapse is
neglected. The effect on the collapse load of interaction between bending and axial extension has
been reviewed by Jones [4]. Giirkok and Hopkins[5] have considered the effect of finite
deflections on the load carrying capacity of rigid plastic simply supported beams.

Recent interest in vehicle crashworthiness suggests a new area of application for structural
plasticity. In contrast to most previous applications, however, the ~etermination of the collapse
load itself is of little direct interest. It is the behavior of the frame during collapse that is the
central issue. Thus there is a need to predict the force-deformation characteristics of complex
frames during collapse where the total "crush" of the structure is of the same order as the original
overall dimensions.

Dynamic plastic collapse of simple structures has been considered by several authors. An
analytical study for a planar beam has been presented by Jones [6]. Although non-linear effects
are considered, the analysis is restricted to small rotations at the plastic hinges. Youngdabl[7] has
obtained a large deformation solution for a beam constrained as a side of a symmetrically
deforming hexagonal frame. Numerical solution procedures for large plastic deformation of
planer beams and rings have been developed by Witmer et al. [8] and Krieg and Duffy [9]. In these
programs continuum constitutive equations are employed necessitating numerical quadraturl:
through the thickness at each step.

In the present paper a structural theory is presented for the static analysis of large plastic
deformations of space frames. The frame may consist of an arbitrary number of beam elements
that are connected at node points. External loads are assumed concentrated at the nodes. For the
frame structures contemplated plastic deformation is generally localized even at large
deflections. Thus the present theory assumes that plastic deformation is confined to idealized
binges which may form at any node. The governing equations for a beam element are derived as a
relation between generalized force rates and rates of kinematic variables associated with the
nodes. It should be noted that the concept of a plastic hinge necessarily introduces discontinuities
in the rotation and displacement rates, the discontinuities representing the plastic deformation
rates. Thus some care must be taken in introducing appropriate nodal variables.

For the range of deformation contemplated here both open and closed thin wall beams
typically exhibit local collapse of the cross section at the hinge. This local deformation
significantly affects the overall structural behavior. Typical behavior is illustrated in Fig. 1which
shows the experimental force-deflection curve for a cantilever beam loaded by a vertical force at
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Fig. I. Force-deflection curve for a cantilever beam.

the tip. The initial elastic response is followed by an elastic-plastic region of increasing load. The
maximum load is within 1% of the theoretical limit load, Pc =: Moll, where Mois the fully plastic
moment.

If large deformation is considered, we would anticipate an increasing load as finite rotations
occur since the force must increase to maintain the yield moment. Instead we observe a marked
"softening", the load carrying capacity dropping to 50% of its maximum value. This reduction is
due to the local collapse of the cross section at the hinge. The non-linear geometry effects are
present, but are completely dominated by the local deformation except at very large rotations.

This local deformation cannot, of course, be computed within the context of a structural
theory. In a companion paper[lO], however, it is shown that the reduced load carrying capacity
can be accounted for by appropriate modification of the yield function. Constitutive equations for
such "generalized plastic hinges" are developed in a later section.

The present static analysis is directed toward prediction of the force-deftection characteristics
of complex frames. In addition the rate formulation may readily be extended to the dynamic case.
A discussion of the dynamic aspects has been published elsewhere[ll].

NOTATION

We consider an elastic beam element which may form ideal plastic hinges at its end node
points. The motion of the beam may consist of elastic deformation, rigid body motion of the node
points, and rigid body motion of the beam relative to the node points due to plastic deformation at
the hinges. The necessary reference frames for describing this motion are shown in Fig. 2. The
nodes are represented by point masses to which are fixed reference frames MI and Mi' Two
additional reference frames, denoted F; and ~, are fixed to the beam end points. The origin of
these frames is at the shear center of the beam cross section; the Xl axis is tangent to the beam
axis and Xl and X2 are along the principal axes of the cross section. A subscript "0" denotes tbe
initial position and orientation of the respective frames.

The positions of F; and ~ with respect to the fixed global system are denoted by Xl and Xi
respectively. Likewise the positions of M, and M are denoted by yi and Yi. The orientations of
the four frames with respect to the global system are specified by the direction cosine matrices
LM, LM, LF;, L~ respectively. The components of LF are
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(1)

where Fe. and e/ are the base vectors of the frame F and the global frame respectively.
In general we will use the notation F Vi for column matrices whose elements denote vector

components. The superscript "i" denotes the node associated with the vector and the superscript
"p" denotes the frame in which the vector components are expressed. If "F" is the global frame,
the superscript will be suppressed.

ROTATION RATES
ELASTIC w' _~j - ~i

PLASTIC ~iP.~i _ ~i

!ejp. ~j -!ej

Fi lANG. VEL. ~i)

Mi lANG. VEL. gil

~, Xl yl
Mio / _0'_0
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Fig. 2. Kinematics of deformation.

Associated with each node we introduce the generalized displacement rate

(2)

where u is the nodal displacement and {} the rotation rate of the node frame. We also introduce a
generalized force rate associated with the beam element at the point i as

(3)

where ~ is the resultant force and MI the resultant couple acting on the beam at point i. The usual
beam theory sign convention is employed.

With this we introduce the generalized displacement rate and force rate vectors for the beam
element as

. [DI

]D= j)I , . [I.']R= 1./ . (4)

Our immediate goal is tp relate I. to D.

KINEMATICS OF DEFORMATION

Referring to Fig. 2 we can visualize the deformatioo from the initial state to the current
configuration as a rigid body motion of the beam frames Rand Fj plus an elastic deformation.
The rigid body motion may be due to both overall rigid body motion of the system and to plastic
rotation and extension of the hinges at node i and/or node j. In the deformed configuration the
node frames are at yl, yl and the beam frames at X', XI relative to the Blobal frame.
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The origins of beam and mass frames may differ by plastic displacements occurring at the
hinges. Thus

Xi=yi +UiP

(5)

where Vip and Vip denote the plastic displacements referred to the global frame. Also

(6)

in which the superscript .. T" denotes the transpose, V· is the elastic displacement of the end j
with respect to the end i, and r is the vector

(7)

where I is the beam length.
In the initial configurationI

(8)

Equations (5) through (8) can be combined to give

where

(9)

ui =yi _yoi, ui =yi -yl (10)

A rate equation for the node frame displacements is now obtained by differentiating (9). In
carrying out the calculations we recall that

LF= W(LF)

where W is the skew-symmetric rotation matrix

(11)

(12)

in which F(J)k represent the components of the rotation rate of the F frame with respect to the F
frame. With this it can be shown that

(13)

where the 3 x 3 matrix HR is defined in the Appendix and lI) i denotes the rotation rate of the F,
frame.

We also note that the plastic displacements are due to plastic extension of the beam. Thus the
extension rate is always directed along the current X3 axis of the beam frame, I.e.

(14)

where r.!iP and r.!iP are the scalar axial plastic extension rates.
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With this differentiating (9) yields
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(15)

A second kinematic equation is obtained by recognizing that the ~ and Fj beam frames differ
only due to elastic deformation. Thus the beam frame rotation rates are related by

(16)

in which ti) e denotes the elastic rotation rate of the Fj frame relative to the ~ frame.
Finally we wish to express (15) and (16) in terms of the node frame rotation rates. The

difference in orientation of the node and beam frames is due to plastic rotation at the hinges.
Introducing the plastic rotation rates gives

(17)

where the superscript "p" denotes the binge rotation rate. Using (17) to eliminate the beam frame
rates in (15) and (16) yields

(18)

The left hand sides of (18) involve components of the generalized displacement rate D,
whereas the right hand sides involve the elastic deformation of the beam and the plastic
deformation occurring at the nodes. It remains to relate these deformation quantities to the
generalized forces acting on the beam at the node points.

EQUILIBRIUM

Introducing the generalized force defined in (3), the equations of equilibrium can be expressed
as

where A is the 6 x 6 constant matrix

A =L_!~~]
[-E: I

in which I is the 3 x 3 identity matrix and E is the 3 x 3 matrix

[
0 1 o~E=l -1 0 0 .
000

The 6 x 6 matrix U is a function of the elastic displacements. It is

in which

(19)

(20)

(21)

(22)

(23)
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We now obtain a rate equation by differentiating (19). In carrying out this computation we
must account for the change in orientation of the F; frame. This is most conveniently done by
expressing (19) in the global system. We obtain

R' = (TF;f(A + U)(TF;)Ri

where TF denotes the 6 x 6 transformation matrix

[
LF I 0]

TF= -oiu7 .

It can be shown that

where

[ 0 10]
UG= -0£6tO

in which

(24)

(25)

(26)

(27)

UBG= [ ~3
- U2

(28)

Also it follows from (25) and (11) that

TF= (TW)(TF)

(TF)T = -(TF)T(TW)

where TW is the 6 x 6 rotation matrix

[W 10]
TW=rotwl

(29)

(30)

Introducting (26) into (24), differentiating, and using (29) gives after some algebraic manipulation

(31)

The 6 x 3 matrices J1 and J2 involve the stress resultants at point j and are given in the Appendix.
We now eliminate the beam frame rotation rate through (17). With this (31) becomes

(32)

CONSTITUTIVE EQUATIONS FOR GENERALIZED PLASTIC HINGES

We must relate the plastic deformation rates in (18) and (32) to the generalized forces acting
on the beam. As discussed in the Introduction local collapse of the beam cross section
significantly affects the load carrying capacity of the hinge. This detailed behavior cannot, of
course, be computed within the context of a structural theory. Nevertheless it is shown in [10J
that its effect on the load carrying capacity of the hinge has characteristic features that may be
accounted for by the introduction of additional parameters in the generalized yield function.
These "hinge parameters" are functions of the accumulated plastic deformation, and in the
structural sense may be viewed as constitutive properties of the hinge. Their determination from
standardized tests is discussed in [10].
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Here we develop appropriate constitutive equations for the ith node. We assume the behavior
of the hinge is determined by a scalar generalized yield function

(33)

where ~l are appropriate normalized stress resultants in the local beam coordinates. We assume
that the yield function is independent of the transverse shear forces, and let Y/ (j = 1, 2, 3,4)
denote the last four elements of F'R'. Thus

j=I,2,3,4. (34)

The scaling parameters are considered as a four element vector of "hinge parameters". We define

j =1,2,3,4 (35)

where K/ are the elements of the plastic deformation rate vector

(36)

Thus OJ represents the accumulated plastic deformation in extension, biaxial bending, or torsion
relative to the local beam coordinates. We now assume

(37)

As shown in [10] the four functions (37) are characteristic of a given cross section and may be
determined from standardized tests.

In effect a changes the shape of the yield function in the physical stress resultant space.
Alternatively the components of a may be considered as "damage measures" which control the
load carrying capacity of the hinge. From this viewpoint the assumption embodied in (37) is that
the maximum principal moment, for example, is a function only of the accumulated plastic
rotation about the corresponding principal axis. This is obviously a simplifying hypothesis, but
appears reasonable during collapse of the cross section. It has been experimentany verified for
nonproportionalloading in [10]. It validity for reverse plastic deformation is considerably more
speculative. For the applications of interest, however, this is seldom an issue, i.e. once the cross
section has collapsed we are usually not interested in reverse deformation. Finally it should be
noted that the uncoupling of the damage measures inherent in (37) does not imply uncoupling of
the stress resultants. In general their current value depends upon the entire deformation history.

To complete the analysis the plastic deformation rate is related to the yield function through a
normality condition,t Le. we postulate

(38)

where A' is the scalar magnitude and a' is the normalized gradient

(39)

in which Vis the gradient operator in the normalized stress resultant space. The scalar magnitude
is determined from the condition

It can be shown that (40) leads to

i' =0. (40)

(41)

tIt should be emphasized that this is a strong assumption since the usual stability arguments for normality are not
necessarily applicable here.
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where

in which D is the scalar

I. K. McIvOR et al.

GR' = - D-1(MR)(TP')R

GB i = -D-1(MR)Bi(LP,) (42)

(43)

In (42) the sUbscript R denotes the last four rows of the transformation matrix (25). The 4 x 3
matrix B' depends upon the current generalized forces and is listed in the Appendix for
reference. The 1x 4 matrices MR and MB are

[at]
MR = aY/

j=I,2,3,4 (44)

where a/ is the jth element of a i
. SUbstituting (41) into (38) gives the final result for the plastic

deformation rates. It is convenient to partition (38) and express separately the extension rate and
the plastic rotation rate in the global frame. Recalling (14) we obtain

where

(rip = (LP')Tj(riP = (EHi)it' + (EHBi)O!

w'P = (Hpi)iti +(HPBi)Oi

EHi= (LP,fia.i(GR i)

EHB' = (LP')Tia.i(GB i
)

Hpi= (LP,)TaRi(GR i), HPB i = (LP')TaR'(GBi)

(45)

(46)

in which the subscript R denotes the last three elements of a i
.

Analogous relations may be derived for the node j. They may be obtained by replacing i with j
in eqns (33) through (46) and changing the signs of GR" GB i and MB in (42) and (43). The
sign change occurs because of the kinematic definition of WI in (17).

ELASTIC DEFORMATION RATE EQUATIONS

We also need elastic constitutive relations expressed in rate form. From elastic beam theory
we have relative to the current configuration beam frame P,

(47)

(48)

where I'
I D" is the generalized elastic displacement of the j end relative to the i end and KE- 1 is

the inverse of the elastic stiffness matrix (given for reference in the Appendix). A rate equation is
obtained by differentiation. As in the equilibrium equations we must account for the rotation of
the P, frame. This introduces the rotation rate Wi which is eliminated through (17), Equation (45)
is then used to eliminate w i

p
• After considerable algebraic manipulation, the final result expressed

in the global frame is

where

KT= (TP')T(KE-1)(TP,)

KRT= (TP')T(KR)(LFJHpi

KRTB= (TFJT(KR)(LP,)[I + HPBil

(49)
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in which KR is a 6 x 3 matrix depending upon the generalized forces and elements of the elastic
stiffness matrix. It is given for reference in the Appendix.

ELEMENT STIFFNESS MATRIX

Equations (18) and (32) represent twelve equations involving the twelve components of the
generalized nodal displacement rate 0 and the generalized force rate it. We eliminate the elastic
and plastic deformation rates in these equations through (48) and (45) respectively. We obtain

_iJl +01 - [(HR)(1 +HPB I
) +EHB I + (KRTB)u ]01

- (EHBI)OI

=[(HRXHp/)+EHI +(KRT)u]itl + [EHI +(KT)u]itl

- [1 +HPB I +(KRTB)dOI +[1 - HPBI]OI = [Hp i +(KRT)dRI + [Hpi +(KT)ditl (50)

[J1(l +HPB I
) +J.z(KRTB)u ]01

= [l-lt{Hp /)-}2(KRT)U]itl -{(TR)TA(TR)+ UG +J2(KT)u]it/.

The subscripts U and L denote the upper three rows and the lower three rows respectively of the
corresponding matrix. Equations (50) have the matrix form

Thus

where the "element stiffness matrix" is

Hit = BO.

it= KO

(51)

(52)

(53)

APPLICATION TO GENERAL FRAMES

A computer program for computing the large plastic deformation of general frames has been
developed based on the above theory. The global frame equations are assembled in the usual way
from consideration of equilibrium of the node points (expressed in rate form). Externa1loads are
assumed to be applied at the nodes. Displacement boundary conditions including imposed
displacements are handled by contraction of the global matrix. The final system of equations has
the form

(KG)U=F (54)

where Uis the Ullknown generalized nodal displacement rate andt'is a known vector of loading
and imposed displacement rates.

The analysis has been,formulated as rate equations. For numerical solution (54) is expressed
in incremental fonn. We let

AUt +1 =U(tA:+1)- U(t,,)

AFt+l =F(tt+I)- F(tk ).

(55)

Evalu. (54) at time t... replacina the derivatives by forward differences, and uaing {55) then
gives

{KG(t,JJAUk+l =AFt + l • (56)

After each ,forward step the lDatrix KG must be updated. In partieular we muat update the
direction cosine m..... 4edniDf the beam',refereneeframes. i'or tbiS purpose we approximate
LFby

(57)

Also we lfttroduee ..iummental rotation vector

(58)

USS Vol. 13. No. ~D
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Introducting (57) into (11), multiplying through by ill, and using (58) then yields

LF(tk + l ) = (WB)LF(td

where

(59)

(60)

The use of the approximation (58) implies that lIMIl2 is small compared to unity. Basically this
requirement is used to determine the step size of the incremental process.

Although the analysis leading to (52) is the fundamental basis of the computer program, there
are additional considerations which must be implemented in the program development. The
stiffness matrix was derived on the basis that the plastic hinges at the beam nodes are operating.
If the hinge is not operating, the plastic contribution can be eliminated by setting the OR and OB
matrices associated with the node to zero.

It is necessary, however, to monitor in the program the operation of the hinges. Initially the
OR and OB matrices are set to zero. At the end of each forward integration step, the yield
function f is computed at each node. If it is less than unity, the computation proceeds to the next
step. If it exceeds unity at some node, the step size is reduced until the yield function is satisfied.
At the next step the OR and OB matrices for the appropriate node are included in the
computation.

Elastic unloading is included by monitoring the rate of energy dissipation at the hinge. The
dissipation rate is

(61)

At each time step d is computed from (61). If d > 0, the computation proceeds to the next step. If
d < 0, the OR and OB matrices for that node are set to zero before proceeding.

COMPARISON WITH EXPERIMENT

The experimental force-displacement curve was obtained from a static crush test for the
welded space frame shown in Fig. 3. The members are 1 in x 1in x 0,075 in 1040 structural steel

Fig. 3. Space frame before deformation.
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tutring. The configuration is similar to a scaled vehicle frame used in model testing[12}. It
consists of a forestructure welded to a rigid plate which is connected to a second plate tIlrOQIb a
rear structure. The rear plate was clamped to the bed of the testing machine, and the frame was
moved in the negative X2 diteettion (Fig. 5) against a rigid pole indenter. The rear structure
remained elastic, but the forestructure was crushed longitudinally about 4.8 in which is over 50%
of the originalfotestructure dimensions. The final deformed configuration is shown in Fig. 4.

The model employed for the computer simulation is shown in Fig. 5. It consists of 15 nodes, 12

Fig.4. Space frame after deformation.
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beam elements and 2 rigid plate elements. Elastic properties were computed from cross sectional
dimensions. The constitutive properties of the plastic hinges were taken from [10].

The experimental force-deformation curve is given by the circled points in Fig. 6. The
anomalous behavior of the test in the region of maximum load is best explained by Fig. 7 which
shows the transverse displacement of the contact node UI versus the longitudinal displacement
U2• Initially the transverse displacement was evidently constrained. A sudden slipping of the
contact node along the indentor occurred at about 0.75 in of longitudinal displacement. This
sudden slip is accompanied by a sharp drop in load. The transverse displacement then increases
monotonically as the deformation proceeds. It should be noted that the experimental transverse
displacement is subject to a fairly large relative error. Due to severe local deformation at the
contact node, accurate measurement of the nodal displacement was difficult.

It is clear that the test boundary conditions at the contact node are complet. To examine the
effect of boundary conditions, preliminary computations were made for two difterent cases:

(i) Ttransverse Force PI = 0
(ii) Transverse Displacement UI = O.

In both cases the contact node was assumed free to rotate. The computed results for the first two
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inches of crush are shown in Fig. 6. As anticipated these limiting cases bracket the experimental
result.

As a more severe test of the theory, a third case was considered in which the transverse
displacement U1 was specified by the piece-wise linear approximation to the experimentally
observed curve shown in Fig. 7. It was again assumed that the contact node was free to rotate.
The predicted force-deformation curve is shown as the dashed curve in Fig. 6. The most
pronounced discrepancy is that the computed result shows a greater softening rate for
displacements in the range of 1.5 to 2.5 in. In general, however, the overall agreement is good.

Computations were carried out on The University of Michigan IBM 370/74 computer. The
4.8 in of crush required 125 steps. Total CPU time was 87 sec.
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APPENDIX
In the following we list for completeness the various matrices arising in the derivation. The 3x 3orientation matrix HR is

(AI)

where

(A2)

The 6 x3 matrices I, and I. in the equilibrium eqns (31) are

where the 3x 3 matrices are

in which

and

The 4x 3 matrix B' appearing in (42) is

JR, = (LF,)TJB(LF,)

'\[-R' 0 ~IJB = I 0 -R, 0
R, R. 0

(A3)

(A4)

(A5)

(A6)

F'[_R.
B'= 0

R.
-R,

OJ'R,
-R.

o
(A7)
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The elastic compliance matrix in (47) is

['
0 0 0 k7

!]
KE- ' == ~ k2 0 k. 0

0 k, 0 0
ks 0 k. 0

k7 0 0 0 k,
0 0 0 0 0

in which

k, == P/3EI2 , k2 == 1'/3EI1> k, == ilEA

k.==/IEI" k,=ilEI2 , k.=ilGJ

k, == F/2EI2 , ks == - F/2EI[

(AS)

(A9)

where E is the elastic modulus, G is the shear modulus, I, and 12 are the principal moments of inertia, A is the cross section
area, J is the polar moment of inertia, and I is the beam lenth. The 6 x 3 matrix KR in (49) is


